Электроакустические преобразователи - определение. Что такое Электроакустические преобразователи
Diclib.com
Словарь ChatGPT
Введите слово или словосочетание на любом языке 👆
Язык:

Перевод и анализ слов искусственным интеллектом ChatGPT

На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:

  • как употребляется слово
  • частота употребления
  • используется оно чаще в устной или письменной речи
  • варианты перевода слова
  • примеры употребления (несколько фраз с переводом)
  • этимология

Что (кто) такое Электроакустические преобразователи - определение

Электроакустические аналогии
Найдено результатов: 14
ЭЛЕКТРОАКУСТИЧЕСКИЕ ПРЕОБРАЗОВАТЕЛИ      
преобразуют электрическую энергию в акустическую (энергию упругих колебаний) и обратно. Используются для приема и излучения звука. Наиболее распространены электродинамические (громкоговорители, микрофоны), пьезоэлектрические и магнитострикционные электроакустические преобразователи.
Электроакустические преобразователи      

устройства, преобразующие электрическую энергию в акустическую (энергию упругих колебаний среды) и обратно. В зависимости от направления преобразования различают Э. п.: излучатели и приёмники. Э. п. широко используют для излучения и приёма звука в технике связи и звуковоспроизведения, для измерения и приёма упругих колебаний в ультразвуковой технике, гидролокации и в акустоэлектронике. Наиболее распространённые Э. п. линейны, т. е. удовлетворяют требованию неискажённой передачи сигнала, и обратимы, т. е. могут работать и как излучатель, и как приёмник, и подчиняются принципу взаимности. В большинстве Э. п. имеет место двойное преобразование энергии (рис.): электромеханическое, в результате которого часть подводимой к преобразователю электрической энергии переходит в энергию колебаний некоторой механической системы, и механоакустическое, при котором за счёт колебаний механической системы в среде создаётся звуковое поле.

Существуют Э. п., не имеющие механической колебательной системы и создающие колебания непосредственно в среде, например электроискровой излучатель, возбуждающий интенсивные звуковые колебания в результате электрического разряда в жидкости, излучатель, действие которого основано на электрострикции (См. Электрострикция) жидкостей. Эти излучатели необратимы и применяются редко. К особому классу Э. п. относятся приёмники звука (также необратимые), основанные на изменении электрического сопротивления чувствительного элемента под влиянием звукового давления, например угольный Микрофон или полупроводниковые приёмники, в которых используется т. н. Тензорезистивный эффект - зависимость сопротивления полупроводников от механических напряжений. Когда Э. п. служит излучателем, на его входе задаются электрическое напряжение U и ток i, определяющие его колебательную скорость v и звуковое давление р в его поле; на входе Э. п. - приёмника действует давление р или колебательная скорость v, обусловливающие напряжение V и ток I на его выходе (на электрической стороне). Теоретический расчёт Э. п. предусматривает установление связи между его входными и выходными параметрами.

Колебательными механическими системами Э. п. могут быть стержни (См. Стержень), Пластинки, оболочки (См. Оболочка) различной формы (полые цилиндры, сферы, совершающие различного вида колебания), механические системы более сложной конфигурации. Колебательные скорости и деформации, возникающие в системе под воздействием сил, распределённых по её объёму, могут, в свою очередь, иметь достаточно сложное распределение. В ряде случаев, однако, в механической системе можно указать элементы, колебания которых с достаточным приближением характеризуются только кинетической, потенциальной энергиями и энергией механических потерь. Эти элементы имеют характер соответственно массы М, упругости 1/С и активного механического сопротивления r (т. н. системы с сосредоточенными параметрами). Часто реальную систему удаётся искусственно свести к эквивалентной ей (в смысле баланса энергий) системе с сосредоточенными параметрами, определив т. н. эквивалентные массу Мэкв, упругость 1/Сэкв и сопротивление трению rm. Расчёт механических систем с сосредоточенными параметрами может быть произведён методом электромеханических аналогий (см. Электроакустические и электромеханические аналогии). В большинстве случаев при электромеханическом преобразовании преобладает преобразование в механическую энергию энергии либо электрического, либо магнитного поля (и обратно), соответственно чему обратимые Э. п. могут быть разбиты на следующие группы: электродинамические преобразователи, действие которых основано на электродинамическом эффекте (излучатели) и электромагнитной индукции (приёмники), например громкоговорители (См. Громкоговоритель), микрофон; электростатические, действие которых основано на изменении силы притяжения обкладок при изменении напряжения и на изменении заряда или напряжения при относительном перемещении обкладок конденсатора (громкоговорители, микрофоны); пьезоэлектрические преобразователи, основанные па прямом и обратном пьезоэффекте (см. Пьезоэлектричество); электромагнитные преобразователи, основанные на колебаниях ферромагнитного якоря в переменном магнитном поле и изменении магнитного потока при движении якоря; магнитострикционные преобразователи (См. Магнитострикционный преобразователь), использующие прямой и обратный эффект магнитострикции (См. Магнитострикция).

Свойства Э. п. - приёмника характеризуются его чувствительностью в режиме холостого хода γxx = V/p и внутренним сопротивлением Zэл. По виду частотной зависимости V/p различают широкополосные и резонансные приёмники. Работу Э. п. - излучателя характеризуют: чувствительность, равная отношению р на определённом расстоянии от него на оси характеристики направленности к U или i; внутреннее сопротивление, представляющее собой нагрузку для источника электрической энергии; акустоэлектрический кпд ηа/эл = Wak/Wэл, где Wak - активная акустическая мощность в нагрузке, Wэл - активная электрическая потребляемая мощность, Wak = Zнv02 (v0 - колебательная скорость точки центра приведения на излучающей поверхности, Zн - сопротивление акустической нагрузки, равное сопротивлению излучения Zs, при контакте Э. п. со сплошной средой). Перечисленные параметры зависят от частоты. Величины р и ηа/эл достигают максимального значения на частотах механического резонанса, вследствие чего мощные излучатели делают, как правило, резонансными. Конструкции Э. п. существенно зависят от их назначения и применения и поэтому весьма разнообразны.

Лит.: Фурдуев В. В., Электроакустика, М. - Л., 1948; Харкевич А. А., Теория преобразователей, М. - Л., 1948; Матаушек И., Ультразвуковая техника, пер. с нем., М., 1962; Ультразвуковые преобразователи, под ред. Е. Кикучи, пер. с англ., М., 1972.

Б. С. Аронов, Р. Е. Пасынков.

Блок-схема электроакустического преобразователя: 1 - электрическая сторона; 2 - механическая колебательная система; 3 - звуковое поле; сплошные стрелки - электромеханическое (механоэлектрическое) преобразование; пунктирные - механоакустическое (акустомеханическое).

ЭЛЕКТРОМЕХАНИЧЕСКИЙ ПРЕОБРАЗОВАТЕЛЬ         
преобразует электрический ток в соответствующее ему механическое линейное или угловое перемещение (напр., катушка индуктивности со свободно перемещающимся сердечником). Применяются главным образом в качестве исполнительных механизмов в системах автоматического регулирования (управления).
Электромеханический преобразователь         

устройство для преобразования механических перемещений (колебаний) в изменение электрического тока или напряжения (электрический сигнал) и наоборот. Применяются главным образом как исполнительные устройства систем автоматического регулирования (управления) и в качестве датчиков механических перемещений в автоматике и измерительной технике. По принципу преобразования различают резистивные, электромагнитные, магнитоэлектрические, электростатические Э. п.; по типу выходного сигнала - аналоговые и цифровые (с непрерывными и дискретными выходными сигналами). Для оценки Э. п. учитывают его статической и динамической характеристики, чувствительность (или коэффициент передачи) преобразования Е =Δух (где Δу - изменение выходной величины у при изменении входной величины х на Дж), рабочий диапазон частот выходного сигнала, статическую ошибку (погрешность) сигнала, статическую ошибку (погрешность) преобразования. Примером Э. п. могут служить измерит, механизм магнитоэлектрического прибора (См. Магнитоэлектрический прибор), Громкоговоритель, Микрофон, Пьезоэлектрический датчик.

Лит.: Электрические измерения неэлектрических величин, под ред. П. В. Новицкого, 5 изд., Л., 1975.

Электромеханический преобразователь         
Электромеханические преобразователи — класс устройств, созданных для преобразования электрической энергии в механическую и наоборот. Также возможно преобразование электрической энергии в электрическую же энергию другого рода. Основным видом электромеханического преобразователя является электродвигатель (электрогенератор).
ФОТОЭЛЕМЕНТ         
  • Фотоэлемент на основе мультикристаллического кремния
  • 419x419px
электронный прибор, в котором, под действием света возникает электродвижующая сила.
ФОТОЭЛЕМЕНТ         
  • Фотоэлемент на основе мультикристаллического кремния
  • 419x419px
прибор, в котором под действием падающего на него света возникает электродвижущая сила (фотоэдс). Различают фотоэлементы электровакуумные и полупроводниковые. Используют в автоматической контрольной и измерительной аппаратуре.
фотоэлемент         
  • Фотоэлемент на основе мультикристаллического кремния
  • 419x419px
м.
Прибор, действие которого основано на непосредственном преобразовании световой энергии в электрическую (в физике).
ФОТОЭЛЕМЕНТ         
  • Фотоэлемент на основе мультикристаллического кремния
  • 419x419px
а, м. тех.
Прибор, в котором под воздействием падающего на него света возникает электродвижущая сила.
ФОТОЭЛЕКТРИЧЕСКИЙ ПРЕОБРАЗОВАТЕЛЬ         
  • Фотоэлемент на основе мультикристаллического кремния
  • 419x419px
устройство на основе полупроводниковых фотоэлементов, предназначенное для преобразования световой энергии в электрическую (напр., солнечная батарея).

Википедия

Динамические аналогии

Динамические аналогии - это метод представления явлений физического мира, обычно называемых "исходной системой", с помощью другой, более понятной, обычно называемой "анализируемой системой". Метод основан на сходстве дифференциальных уравнений исходной и анализируемой систем.

Метод динамических аналогий впервые был предложен Гарри Ф. Ольсоном в книге "Динамические аналогии", вышедшей в свет в 1943 году. Книга явилась результатом передовых работ по акустике. В ней приведены аналогии между элементами механических (линейных и вращающихся), акустических и электрических систем. Было предложено анализировать акустические и механические системы путём преобразования их к электрическим аналогам. Анализировать исходную механическую или акустическую систему с несколькими степенями свободы путём решения дифференциальных уравнений весьма трудоемко, а после преобразования к электрическому аналогу, ее можно легко проанализировать методами электротехники.

Что такое ЭЛЕКТРОАКУСТИЧЕСКИЕ ПРЕОБРАЗОВАТЕЛИ - определение